Consider the following initial value problem: y^N +49y= \left\{\begin{matrix} 7,\;0\leq t \leq 2...


Consider the following initial value problem:

{eq}y^N +49y= \left\{\begin{matrix} 7,\;0\leq t \leq 2 & \\ 0, \;t>2\;\;\;\;\;& \end{matrix}\right. \hspace{10mm} y(0) = 3,\; y'(0) =0 {/eq}

Using {eq}Y {/eq} for the Laplace transformation of y(t), ie., {eq}Y= L { y(t) }, {/eq} find the equation you get by taking the Laplace transform of the differential equation and solve for {eq}Y(s) = \;\rule{20mm}{.5pt} {/eq}

Initial Value Problem

There are many methods of solving initial value problems. When right hand side term of differential equation contains delta function or unit step function then it can be solve only by using Laplace transform. First we take Laplace transform, find an equation using initial conditions, then take inverse Laplace transform to find final solution.

{eq}L \left \{ f^n \right \}=s^nF(s)-s^{n-1}f(0)-s^{n-2}f^{'}(0)-\cdots -sf^{n-2}(0)-f^{n-1}(0) {/eq}

Apply inverse transform rule if {eq}L^{-1}\left\{F\left(s\right)\right\}=f\left(t\right)\mathrm{\:then}\:L^{-1}\left\{e^{-as}F\left(s\right)\right\}=u\left(t-a\right)f\left(t-a\right){/eq}

Where {eq}u(t){/eq} is unit step function

Answer and Explanation:

Consider the differential equation

{eq}{y}'' + 49y = \begin{cases} 7, \ \ 0\leq t\leq 2 & \\ 0, \ \ \ t\geq 2 & \end{cases} \cdots \cdots (1);\,...

See full answer below.

Become a member to unlock this answer! Create your account

View this answer

Learn more about this topic:

First-Order Linear Differential Equations

from GRE Math: Study Guide & Test Prep

Chapter 16 / Lesson 3

Related to this Question

Explore our homework questions and answers library

福建福彩网 天水市 永康市 成都市 商洛市 大庆市 镇江市 临夏市 阜新市 巴中市 萍乡市 崇州市 邓州市 平度市 河津市 台中市 衡水市 明光市 凤城市 吉林省 石首市 龙海市 黄石市 叶城市 都匀市 武穴市 朝阳市 青岛市 凤城市 葫芦岛市 仙桃市 合肥市 孝感市 邢台市 兴城市 平度市 利川市 洮南市 信阳市 常州市 宁国市 南阳市 徐州市 北宁市 邢台市 鹿泉市 池州市 北宁市 台中市 华阴市 延吉市 铁力市 兴城市 淮安市 汉川市 东阳市 焦作市 西安市 佛山市 潍坊市 甘肃省