Evaluate the integral (by interpreting it as the area between two curves) \int_{0}^{4} | \sqrt{x...

Question:

Evaluate the integral (by interpreting it as the area between two curves) {eq}\int_{0}^{4} | \sqrt{x + 2} - x| {/eq}

Area Between Functions With Integration:

When we have the definite integral set up with the absolute value function in the integrand, then basically it is calculating the area between the two curves. If there is just one curve, then the area is calculated with the x-axis.

Answer and Explanation:


Here the integral:

{eq}\int_{0}^{4} | \sqrt{x + 2} - x| dx {/eq}

is representing the area between the two functions

{eq}f(x)=\sqrt{x + 2} {/eq}

and

{eq}g(x)=x {/eq}

.

Now to evaluate this integral we need to get rid of the absolute sign, as follows:

In the interval:

{eq}0\le \:x\le \:2\\ \Rightarrow \left|\sqrt{x+2}-x\right|=\left(\sqrt{x+2}-x\right)\\ {/eq}

and in the interval:

{eq}2\le \:x\le \:4\\ \Rightarrow \left|\sqrt{x+2}-x\right|=\left(-\sqrt{x+2}+x\right)\\ {/eq}

So now we will split the given integral as follows:

{eq}\int _0^4\left|\sqrt{x+2}-x\right|dx=\int _0^2(\sqrt{x+2}-x) dx+\int _2^4(-\sqrt{x+2}+x) dx\\ =\int _0^2\sqrt{x+2}dx-\int _0^2xdx -\int _2^4\sqrt{x+2}dx+\int _2^4xdx\\ = \left[\frac{2}{3}(x+2)^{\frac{3}{2}}\right]^2_0 -\left[\frac{x^2}{2}\right]^2_0 -\left[\frac{2}{3}(x+2)^{\frac{3}{2}}\right]^4_2+\left[\frac{x^2}{2}\right]^4_2\\ =\frac{10}{3}-\frac{4\sqrt{2}}{3}-4\sqrt{6}+\frac{34}{3}\\ =2.983 {/eq}


Learn more about this topic:

Loading...
How to Find Area Between Functions With Integration

from Math 104: Calculus

Chapter 14 / Lesson 3
6.8K

Related to this Question

Explore our homework questions and answers library

福建福彩网 天水市 永康市 成都市 商洛市 大庆市 镇江市 临夏市 阜新市 巴中市 萍乡市 崇州市 邓州市 平度市 河津市 台中市 衡水市 明光市 凤城市 吉林省 石首市 龙海市 黄石市 叶城市 都匀市 武穴市 朝阳市 青岛市 凤城市 葫芦岛市 仙桃市 合肥市 孝感市 邢台市 兴城市 平度市 利川市 洮南市 信阳市 常州市 宁国市 南阳市 徐州市 北宁市 邢台市 鹿泉市 池州市 北宁市 台中市 华阴市 延吉市 铁力市 兴城市 淮安市 汉川市 东阳市 焦作市 西安市 佛山市 潍坊市 甘肃省