Evaluate the integral by making appropriate substitution. \int \cos^3 x \sin x dx

Question:

Evaluate the integral by making appropriate substitution.

{eq}\int \cos^3 x \sin x dx {/eq}

Integration using Substitution:

Integration can be made simpler by applying prior substitution to the integrand. We must take note, however, that the differential variable also changes. Upon successful integration over the transformed integrand, we must express the final answer in terms of the original variables.

Answer and Explanation:

Evaluate the integral by applying the substitution, {eq}\displaystyle u = \cos x {/eq}, wherein the differential variable becomes {eq}\displaystyle du = -\sin xdx {/eq}. We apply the substitution and then proceed with the integration.

{eq}\begin{align} \displaystyle \int\cos^3 x\sin xdx &= -\int u^3du\\ &= - \frac{u^4}{4} +C\\ \text{Revert the substitution.}\\ &= - \frac{\cos ^4 x}{4}+C \end{align} {/eq}


Learn more about this topic:

Loading...
How to Solve Integrals Using Substitution

from Math 104: Calculus

Chapter 13 / Lesson 5
7.3K

Related to this Question

Explore our homework questions and answers library

福建福彩网 临海市 湖北省 钟祥市 大同市 兰溪市 湘潭市 松滋市 铁力市 彭州市 厦门市 宜春市 邹城市 彭州市 山东省 金昌市 平度市 海南省 双滦区 忻州市 葫芦岛市 十堰市 平度市 潞城市 临沂市 阜新市 普兰店市 汉川市 兴城市 都匀市 枣庄市 安达市 烟台市 高邮市 梅河口市 江油市 白银市 丰城市 孝义市 石首市 池州市 葫芦岛市 福建省 金华市 梅河口市 胶州市 上虞市 大石桥市 江阴市 吉首市 大庆市 铁力市 深州市 山西省 厦门市 项城市 永州市 原平市 明光市 耒阳市