The Metric System: Units and Conversion

An error occurred trying to load this video.

Try refreshing the page, or contact customer support.

Coming up next: Unit Conversion and Dimensional Analysis

You're on a roll. Keep up the good work!

Replay
Your next lesson will play in 10 seconds
• 1:42 Length
• 3:29 Mass
• 4:49 Volume
• 5:32 Density
• 6:58 Temperature
• 8:10 Lesson Summary
Save Save

Want to watch this again later?

Timeline
Autoplay
Autoplay
Speed Speed

Recommended Lessons and Courses for You

Lesson Transcript
Instructor
Kristin Born

Kristin has an M.S. in Chemistry and has taught many at many levels, including introductory and AP Chemistry.

Expert Contributor
Amanda Robb

Amanda holds a Masters in Science from Tufts Medical School in Cellular and Molecular Physiology. She has taught high school Biology and Physics for 8 years.

Just like you and your friend communicate using the same language, scientists all over the world need to use the same language when reporting the measurements they make. This language is called the metric system. In this lesson we will cover the metric units for length, mass, volume, density and temperature, and also discuss how to convert among them.

Metric Measurement

What do all of these words have in common: thermometer, barometer, diameter, odometer and parameter? All of these words end in -meter. You've probably heard this word before, but what does it mean? Meter at the end of a word means measure. You use all kinds of measurements each day. How much sugar is needed in the cookies you're baking? Will it be warm enough to leave your jacket at home? How fast are you driving? How much will a bag of apples cost? How much time will it take you to get home from work?

Most Americans are taught the English or standard system of measurement, but never get a really good dose of the metric system. Lucky for you, it's a much easier system to learn than the English system because all the measurements are base 10 - meaning that when you're converting from one to another, you will always be multiplying or dividing by a multiple of 10. This is much easier than trying to do calculations between ounces and pounds, and feet and miles.

Because you may not be used to thinking metrically, it may take a little practice using and working with the metric system before you gain a better understanding of it and become more fluent in the measurement language of scientists (and most non-Americans). I challenge you to sprinkle a little more metric in your life. Maybe read the milliliter measurement on your soda can or glance at the kilometer reading on your speedometer. Being able to picture metric quantities will really help with the rest of this course.

Length

We're going to start with the units of length so we can get back to this word meter that we started out with. The meter is the basic unit of length in the metric system. A meter is a tiny bit longer than a yard. For distances much longer than a meter, you'd add the prefix kilo- to make the measurement kilometer. A kilometer is the metric version of our mile, even though it's a bit shorter than our mile. A kilometer is equivalent to exactly 1,000 meters. Any unit that has the word kilo- in front of it is equivalent to 1,000 units. You can attach the prefix kilo- to just about anything. If something takes 1,000 seconds, it takes a kilosecond. If a forest has 1,000 trees, it has a kilotree. You get the idea.

For distances much shorter than a meter, we would use either a centimeter or a millimeter. A centimeter is about the width of your pinky. There are exactly 100 centimeters in a meter. In fact, anything that has the prefix centi- is one-hundredth the size of that base unit. This should be very easy to remember, because there are 100 cents in a dollar. One cent is one-hundredth of a dollar!

The last prefix you should be familiar with is milli-. There are exactly 1,000 millimeters in a meter. Anything that has the prefix milli- is 1,000th the size of its base unit. This one is a bit more difficult to remember, but it is definitely the prefix you would use the most in a chemistry class.

Mass

Next on our list of important metric quantities is mass. This is one of the most important measurements a chemist makes. Mass is how much of something you have, or the amount of matter in an object. Don't confuse this with volume (which we'll get to in a bit). Mass is measured using a balance, and the basic unit for mass is the gram. To give you an idea of the relative size of a gram, the mass of a penny is about 2.5 grams.

Sometimes people get confused with the difference between mass and weight. They end up being quite similar because everything you and I do takes place on Earth. But, mass and weight differ because mass is how much of something you have and weight is the force of gravity on an object. Take a look at this example. Both of these blocks have the same mass (one kilogram, or 1,000 grams), but one is on Earth and the other is on the moon. Because the Earth has more mass than the moon, it is going to pull the block with more force. This is why things on Earth have more weight than things on the moon, even though both have the same mass. This may be difficult to imagine because it's not like you're going to the moon on a daily basis to check this stuff out.

To unlock this lesson you must be a www.heiqigong.com Member.

Common Conversions

In this activity, students will be practicing measuring different quantities using the metric system and converting between units. For example, students might measure the length of their desk in meters, then convert it to kilometers. Students will choose at least one object for each quantity discussed in the lesson. To do this activity, you'll need a meter stick, a scale to measure mass, and a thermometer that can measure in Celsius. If you only have a ruler or a Fahrenheit thermometer, you can use a simple internet search to help you convert these values into the metric system. Then, let students convert within the metric system on their own.

Directions

In this activity, you're going to be measuring different objects around you and converting the measurements with the metric system. You should choose one object for each category and initially measure it using the units indicated in the table below. Then, convert it to the other units explained in the lesson. The first row has been filled in as an example. Once you're finished, answer the analysis questions below.

QuantitiesObjectInitial MeasurementConversions
Length (Example)Desk1m0.1km, 100cm, 1000mm
Length
Mass
Volume
Density
Temperature

Analysis

1. Which quantities were easier to measure and why?
2. Why do you think the metric system is used all over the world?
3. Why do you think that there are different units for each quantity in the metric system, such as meters and kilometers?

Solutions

Students will probably find length the easiest to measure, since they are all familiar with this linear quantity. Things that students are less familiar with like density or volume might be more difficult. Students should recognize the ease of the metric system, since it is based on a numerical system of tens. Students should also notice that some units are better for measuring certain things. For example, it's easiest to measure a desk in meters, but a larger unit would be needed to measure the distance between cities.

Register to view this lesson

Are you a student or a teacher?

See for yourself why 30 million people use www.heiqigong.com

Become a www.heiqigong.com member and start learning now.
Back
What teachers are saying about www.heiqigong.com

Earning College Credit

Did you know… We have over 200 college courses that prepare you to earn credit by exam that is accepted by over 1,500 colleges and universities. You can test out of the first two years of college and save thousands off your degree. Anyone can earn credit-by-exam regardless of age or education level.